High-resolution VLA Imaging of Obscured Quasars: Young Radio Jets Caught in a Dense ISM

2020
We present new sub-arcsecond-resolution Karl G. Jansky Very Large Array (VLA) imaging at 10 GHz of 155 ultra-luminous ($L_{\rm bol}\sim10^{11.7-14.2} L_\odot$) and heavily obscured quasars with redshifts $z \sim0.4-3$. The sample was selected to have extremely red mid-infrared (MIR)-optical color ratios based on data from Wide-Field Infrared Survey Explorer (WISE) along with a detection of bright, unresolved radio emission from the NRAO VLA Sky Survey (NVSS) or Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) Survey. Our high-resolution VLA observations have revealed that the majority of the sources in our sample (93 out of 155) are compact on angular scales $<0.2^{\prime \prime}$ ($\leq 1.7$ kpc at $z \sim2$). The radio luminosities, linear extents, and lobe pressures of our sources are similar to young radio active galactic nuclei (AGN; e.g., Gigahertz Peaked Spectrum, GPS, and Compact Steep Spectrum, CSS, sources), but their space density is considerably lower. Application of a simple adiabatic lobe expansion model suggests relatively young dynamical ages ($\sim10^{4-7}$ years), relatively high ambient ISM densities ($\sim1-10^4$ cm$^{-3}$), and modest lobe expansion speeds ($\sim30-10,000$ km s$^{-1}$). Thus, we find our sources to be consistent with a population of newly triggered, young jets caught in a unique evolutionary stage in which they still reside within the dense gas reservoirs of their hosts. Based on their radio luminosity function and dynamical ages, we estimate only $\sim20\%$ of classical large scale FRI/II radio galaxies could have evolved directly from these objects. We speculate that the WISE-NVSS sources might first become GPS or CSS sources, of which some might ultimately evolve into larger radio galaxies.
    • Correction
    • Source
    • Cite
    • Save
    128
    References
    2
    Citations
    NaN
    KQI
    []
    Baidu
    map