Error sensitivity of a log file analysis tool compared with a helical diode array dosimeter for VMAT delivery quality assurance.

2020
PURPOSE Integrating log file analysis with LINACWatch® (LW) into clinical routine as part of the quality assurance (QA) process could be a time-saving strategy that does not compromise on quality. The purpose is to determine the error sensitivity of log file analysis using LINACWatch® compared with a measurement device (ArcCHECK®, AC) for VMAT delivery QA. MATERIALS AND METHODS Multi-leaf collimator (MLC) errors, collimator angle errors, MLC shift errors and dose errors were inserted to analyze error detection sensitivity. A total of 36 plans were manipulated with different magnitudes of errors. The gamma index protocols for AC were 3%/3 mm/Global and 2%/2 mm/Global, as well as 2%/2 mm/Global, and 1.5%/1.5 mm/Global for LW. Additionally, deviations of the collimator and monitor units between TPS and log file were calculated as RMS values. A 0.125 cm3 ionization chamber was used to independently examine the effect on dose. RESULTS The sensitivity for AC was 20.4% and 49.6% vs 63.0% and 86.5% for LW, depending on the analysis protocol. For MLC opening and closing errors, the detection rate was 19.0% and 47.7% for AC vs 50.5% and 75.5% for LW. For MLC shift errors, it was 29.6% and 66.7% for AC vs 66.7% and 83.3% for LW. AC could detect 25.0% and 44.4% of all collimator errors. Log file analysis detected all collimator errors using 1° detection level. 13.2% and 42.4% of all dose errors were detected by AC vs 59.0% and 92.4% for LW using gamma analysis. Using RMS value, all dose errors were detected by LW (1% detection level). CONCLUSION The results of this study clearly show that log file analysis is an excellent complement to phantom-based delivery QA of VMAT plans. We recommend a 1.5%/1.5 mm/Global criteria for log file-based gamma calculations. Log file analysis was implemented successfully in our clinical routine for VMAT delivery QA.
    • Correction
    • Source
    • Cite
    • Save
    17
    References
    1
    Citations
    NaN
    KQI
    []
    Baidu
    map