Multi-stage Ensemble-learning-based Model Fusion for Surface Ozone Simulations: A Focus on CMIP6 Models

2021
ABSTRACT Accurately simulating the geographical distribution and temporal variation of global surface ozone has long been one of the principal components of chemistry-climate modelling. However, the simulation outcomes have been reported to vary significantly as a result of the complex mixture of uncertain factors that control the tropospheric ozone budget. Settling the cross-model discrepancies to achieve higher accuracy predictions of surface ozone is thus a task of priority, and methods that overcome structural biases in models going beyond naive weighted averaging of model predictions is urgently required. Building on the Coupled Model Intercomparison Project Phase 6 (CMIP6), we have transplanted a conventional ensemble learning approach, and also constructed an innovative 2-stage enhanced space-time Bayesian neural network to fuse an ensemble of 57 simulations together with a prescribed ozone dataset, both of which have realised outstanding performances (R2 > 0.95, RMSE
    • Correction
    • Source
    • Cite
    • Save
    81
    References
    1
    Citations
    NaN
    KQI
    []
    Baidu
    map