Enhanced Performance of a CVD MoS2 Photodetector by Chemical in Situ n-Type Doping

2019 
Transition metal dichalcogenides (TMDs) are a category of promising two-dimensional (2D) materials for the optoelectronic devices, and their unique characteristics include tunable band gap, nondangling bonds as well as compatibility to large-scale fabrication, for instance, chemical vapor deposition (CVD). MoS2 is one of the first TMDs that is well studied in the photodetection area widely. However, the low photoresponse restricts its applications in photodetectors unless the device is applied with ultrahigh source–drain voltage (VDS) and gate voltage (VGS). In this work, the photoresponse of a MoS2 photodetector was improved by a chemical in situ doping method using gold chloride hydrate. The responsivity and specific detectivity were increased to 99.9 A/W and 9.4 × 1012 Jones under low VDS (0.1 V) and VGS (0 V), which are 14.6 times and 4.8 times higher than those of a pristine photodetector, respectively. The photoresponse enhancement results from chlorine n-type doping in CVD MoS2 which reduces the tr...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    35
    Citations
    NaN
    KQI
    []
    Baidu
    map