Effect of vole bioturbation on N2O, NO, NH3, CH4 and CO2 fluxes of slurry fertilized and non-fertilized montane grassland soils in Southern Germany.

2021
Abstract Populations of rodents such as common vole (Microtus arvalis) can develop impressive soil bioturbation activities in grasslands. These burrowing and nesting activities highly impact soil physicochemical properties as well as vegetation coverage and diversity. Managed grasslands in livestock production regions receive significant amounts of slurry, commonly at high loads at the beginning of the vegetation period. However, nothing is known how the combination of vole bioturbation and slurry application may affect the fluxes of C and N trace gases from grasslands. Here we report on an in-situ experiment and supporting laboratory incubations carried out during the period March to May 2020 comparing C (CH4, CO2) and N (N2O, NO, NH3) trace gas fluxes from Lolium perenne and Trifolium repens dominated montane grasslands with and without vole bioturbation and with and without slurry application, whereby, with regard to the latter, we further differentiated between acidified and non-acidified slurry. Vole bioturbation significantly (p
    • Correction
    • Source
    • Cite
    • Save
    60
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map