Copper and zinc isotope variations in ferromanganese crusts and their isotopic fractionation mechanism

2021
Ferromanganese (Fe-Mn) crusts are potential archives of the Cu and Zn isotope compositions of seawater through time. In this study, the Cu and Zn isotopes of the top surface of 28 Fe-Mn crusts and 2 Fe-Mn nodules were analysed by MC-ICP-MS using combined sample-standard bracketing for mass bias correction. The Zn isotope compositions of the top surface of Fe-Mn crusts are in the range of 0.71‰ to 1.08‰, with a mean δB66Zn value of 0.94‰±0.21‰ (2SD, n=28). The δ65Cu values of the top surface of Fe-Mn crusts range from 0.33‰ to 0.73‰, with a mean value of 0.58‰±0.20‰ (2SD, n=28). The Cu isotope compositions of Fe-Mn crusts are isotopically lighter than that of dissolved Cu in deep seawater (0.58‰ vs. 0.9‰). In contrast, the δ66Zn values of Fe-Mn crusts appear to be isotopically heavy compared to deep seawater (0.94‰±0.21‰ vs. 0.51‰±0.14‰). The isotope fractionation between Fe-Mn crusts and seawater is attributed to equilibrium partitioning between the sorption to crusts and the organic-ligand-bound Cu and Zn in seawater. The Cu and Zn isotopes in the top surface of Fe-Mn crusts are not a direct reflection of the Cu and Zn isotopes, but a function of Cu and Zn isotopes in modern seawater. This study proposes that Fe-Mn crusts have the potential to be archives for paleoceanography through Cu and Zn isotope analysis.
    • Correction
    • Source
    • Cite
    • Save
    57
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map