Re-Evaluating One-step Generation of Mice Carrying Conditional Alleles by CRISPR-Cas9-Mediated Genome Editing Technology

2018
CRISPR– Cas9gene editing technology has considerably facilitated the generation of mouse knockout alleles, relieving many of the cumbersome and time-consuming steps of traditional mouse embryonic stem cell technology. However, the generation of conditional knockout alleles remains an important challenge. An earlier study reported up to 16% efficiency in generating conditional knockout alleles in mice using 2 single guide RNAs(sgRNA) and 2 single-stranded oligonucleotides (ssODN) (2sgRNA–2ssODN). We re-evaluated this method from a large data set generated from a consortium consisting of 17 transgenic core facilities or laboratories or programs across the world. The dataset constituted 17,887 microinjected or electroporated zygotes and 1,718 live born mice, of which only 15 (0.87%) mice harbored 2 correct LoxP insertions in cis configuration indicating a very low efficiency of the method. To determine the factors required to successfully generate conditional alleles using the 2sgRNA–2ssODN approach, we performed a generalized linear regression model. We show that factors such as the concentration of the sgRNA, Cas9protein or the distance between the placement of LoxP insertions were not predictive for the success of this technique. The major predictor affecting the method9s success was the probability of simultaneously inserting intact proximal and distal LoxP sequences, without the loss of the DNA segment between the two sgRNA cleavage sites. Our analysis of a large data set indicates that the 2sgRNA–2ssODN method generates a large number of undesired alleles (>99%), and a very small number of desired alleles (
    • Correction
    • Source
    • Cite
    • Save
    31
    References
    8
    Citations
    NaN
    KQI
    []
    Baidu
    map