Chemical-Pressure-Modulated BaTiO3 Thin Films with Large Spontaneous Polarization and High Curie Temperature

2021 
Although BaTiO3 is one of the most famous lead-free piezomaterials, it suffers from small spontaneous and low Curie temperature. Chemical pressure, as a mild way to modulate the structures and properties of materials by element doping, has been utilized to enhance the ferroelectricity of BaTiO3 but is not efficient enough. Here, we report a promoted chemical pressure route to prepare high-performance BaTiO3 films, achieving the highest remanent polarization, Pr (100 μC/cm2), to date and high Curie temperature, Tc (above 1000 °C). The negative chemical pressure (∼-5.7 GPa) was imposed by the coherent lattice strain from large cubic BaO to small tetragonal BaTiO3, generating high tetragonality (c/a = 1.12) and facilitating large displacements of Ti. Such negative pressure is especially significant to the bonding states, i.e., hybridization of Ba 5p-O 2p, whereas ionic bonding in bulk and strong bonding of Ti eg and O 2p, which contribute to the tremendously enhanced polarization. The promoted chemical pressure method shows general potential in improving ferroelectric and other functional materials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    5
    Citations
    NaN
    KQI
    []
    Baidu
    map