Foraging behavior, contaminant exposure risk, and the stress response in wild California condors (Gymnogyps californianus)

2020
Abstract Wild California condors (Gymnogyps californianus) are frequently exposed to lead via lead-based ammunition ingestion, and recent studies indicate significant exposure to organochlorines (e.g. dichlorodiphenyldichloroethylene (DDE) and polychlorinated biphenyls (PCBs)) for condors feeding on beach-cast marine mammals. We investigated the influence of contaminant exposure on condor glucocorticoid response through comparisons between wild and captive populations and identified modifiers of glucocorticoid release. We assessed the glucocorticoid response to routine trapping and handling events through measurement of plasma corticosterone and urate glucocorticoid metabolites (GCM). Comparison of peak urate GCM levels showed wild condors exhibited higher responses to handling-associated stressors (2250 ± 1440 ng/g dry wt, average +/- SD, n=27) than captive condors (907 ± 489 ng/g dry wt., n=6, U = 28, p = 0.003). Multiple linear regression models and an information theoretic approach (AICc) identified several extrinsic variables (e.g., time captive in flight pen before sample collection) that were negatively associated with plasma corticosterone and urate GCM levels in wild condors, which explained ∼25% of glucocorticoid variation. When accounting for these extrinsic variables we found that behavioral variables associated with increased lead and organochlorine exposure risk were positively associated with GCM levels, explaining an additional 15% of glucocorticoid variation among wild condors. Days absent from management area, a variable associated reduced survival attributed to increased lead exposure risk, had a positive influence on plasma corticosterone levels (β = 53 ± 20 SE) and peak urate GCM levels (β = 1090 ± 586 SE). Years observed feeding on marine mammals, a variable positively associated with DDE and PCB exposure, positively influenced peak urate GCM (β = 1100 ± 520 SE) and the magnitude of GCM response (peak GCM – 1st urate GCM) (β = 1050 ± 500 SE). Our findings suggest that individual propensities for these higher risk foraging behaviors predict higher stress-induced glucocorticoid levels in wild condors, and that accounting for variables associated with trapping and handling is essential for assessing the impact of environmental stressors such as contaminants on the condor stress response. As an abnormal glucocorticoid response to stress is associated with reduced reproduction and survival in vertebrates, this work indicates the critical need for further investigations into the physiological impacts of sub-lethal contaminant exposures in scavenging species worldwide.
    • Correction
    • Source
    • Cite
    • Save
    69
    References
    2
    Citations
    NaN
    KQI
    []
    Baidu
    map