One-step synthesis of mixed valence FeOX nanoparticles supported on biomass activated carbon for degradation of bisphenol A by activating peroxydisulfate.

2021
Abstract A novel FeOX nanoparticles supported biomass activated carbon (BAC/FeOX) composite was prepared through one-pot calcination method with FeCl3 and cherry stone powder as precursors. The carbonization of biomass, reduction of Fe3+, and FeOX anchored on carbon substrate could be achieved at the same time. Characterization with transmission electron microscope (TEM) and scanning electron microscope indicated that nanoscale FeOX distributed uniformly on carbon substrate, and X-ray photoelectron spectroscopy, X-ray diffraction, and high resolution TEM characterization proved that the loaded FeOX was high crystallinity of Fe3O4 and α-Fe0. Bisphenol A (BPA) was used to investigate the degradation performance of BAC/FeOX activating peroxydisulfate (PDS). The ratio of raw materials affected degradation efficiency of BPA intensively through the content, valence state, and dispersibility of FeOX nanoparticles, and the optimal material could degrade 20 mg/L BPA completely in 5 min at 0.1 g/L in the presence of 1 g/L PDS. Free radical determination and quenching experiments indicated that both SO4•− and •OH were involved in BPA degradation. The degradation pathway was proposed based on the identification of degradation intermediates. The facile synthesis method, high activation efficiency, and low-cost and environmental friendly raw materials made the BAC/FeOX-50 an alternative catalyst for organic pollution water treatment.
    • Correction
    • Source
    • Cite
    • Save
    65
    References
    7
    Citations
    NaN
    KQI
    []
    Baidu
    map