Systematic Comparison of Vectorial Spherical Radiative TransferModels in Limb Scattering Geometry

2021
Abstract. A comprehensive inter-comparison of seven radiative transfer models in the limb scattering geometry has been performed. Every model is capable of accounting for polarisation within a fully spherical atmosphere. Three models (GSLS, SASKTRAN-HR, and SCIATRAN) are deterministic, and four models (MYSTIC, SASKTRAN-MC, Siro, and SMART-G) are statistical using the Monte Carlo technique. A wide variety of test cases encompassing different atmospheric conditions, solar geometries, wavelengths, tangent altitudes, and Lambertian surface reflectances have been defined and executed for every model. For the majority of conditions it was found that the models agree to better than 0.2 % in the single scatter test cases and better than 1 % in the multiple scatter scalar and vector test cases, with some larger differences noted at high values of surface reflectance in multiple scatter. For the first time in limb geometry, the effect of atmospheric refraction was compared among four models that support it (GSLS, SASKTRAN-HR, SCIATRAN, and SMART-G). Differences among most models in multiple scatter with refraction enabled was less than 1 %, with larger differences observed for some models. Overall the agreement among the models with and without refraction is better than has been previously reported in both scalar and vector modes.
    • Correction
    • Source
    • Cite
    • Save
    77
    References
    3
    Citations
    NaN
    KQI
    []
    Baidu
    map