Reactivities of the Front Pocket N-Cap Cysteines in Human Kinases

2021
Abstract Discovery of targeted covalent inhibitors directed at nucleophilic cysteines is attracting enormous interest. The front pocket (FP) N-cap cysteine has been the most popular site of covalent modification in kinases. Curiously, a long-standing hypothesis associates the N-cap position with cysteine hyper-reactivity; however, traditional computational methods suggest that the FP N-cap cysteines in all human kinases are predominantly unreactive at physiological pH. Here we applied a newly developed GPU-accelerated continuous constant pH molecular dynamics (CpHMD) tool to test the N-cap hypothesis and elucidate the cysteine reactivities. Simulations showed that the N-cap cysteines in BTK/BMX/TEC/ITK/TXK, JAK3, and MKK7 sample the reactive thiolate form to varying degrees at physiological pH; however, those in BLK and EGFR/ERBB2/ERBB4 which contain an Asp at the N-cap+3 position adopt the unreactive thiol form. The latter argues in favor of the base-assisted thiol-Michael addition mechanisms as suggested by the quantum mechanical calculations and experimental structure-function studies of EGFR inhibitors. Analysis revealed that the reactive N-cap cysteines are stabilized by hydrogen bond as well as electrostatic interactions, and in their absence a N-cap cysteine is unreactive due to desolvation. To test a corollary of the N-cap hypothesis, we also examined the reactivities of the FP N-cap+2 cysteines in JNK1/JNK2/JNK3 and CASK. Additionally, our simulations predicted the reactive cysteine and lysine locations in all 15 kinases. Our findings offer a systematic understanding of cysteine reactivities in kinases and demonstrate the predictive power and physical insights CpHMD can provide to guide the rational design of targeted covalent inhibitors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map