Chiral phonons in the pseudogap phase of cuprates

2020
The nature of the pseudogap phase of cuprates remains a major puzzle1,2. One of its signatures is a large negative thermal Hall conductivity3, whose origin is as yet unknown. This is observed even in the undoped Mott insulator La2CuO4, in which the charge carriers are localized and therefore cannot be responsible. Here, we show that the thermal Hall conductivity of La2CuO4 is roughly isotropic; that is, for heat transport parallel and normal to the CuO2 planes, it is nearly the same. This shows that the Hall response must come from phonons, as they are the only heat carriers that are able to move with the same ease both normal and parallel to the planes4. For doping levels higher than the critical doping level at which the pseudogap phase ends, both La1.6−xNd0.4SrxCuO4 and La1.8−xEu0.2SrxCuO4 show no thermal Hall signal for a heat current normal to the planes, which establishes that phonons have zero Hall response outside the pseudogap phase. Inside the pseudogap phase, the phonons must become chiral to generate the Hall response, but the mechanism by which this happens remains to be identified. It must be intrinsic (from a coupling of phonons to their electronic environment) rather than extrinsic (from structural defects or impurities), as these are the same on both sides of critical doping. Thermal transport measurements show that there is a thermal Hall effect in the out-of-plane direction in two cuprates in the pseudogap regime. This indicates that phonons are carrying the heat and that they have a handedness of unknown origin.
    • Correction
    • Source
    • Cite
    • Save
    44
    References
    41
    Citations
    NaN
    KQI
    []
    Baidu
    map