The mechanical stability of the worlds tallest broadleaf trees

2019 
The factors that limit the maximum height of trees, whether ecophysiological or mechanical, are the subject of longstanding debate. Here we examine the role of mechanical stability in limiting tree height and focus on trees from the tallest tropical forests on Earth, in Sabah, Malaysian Borneo, including the recently discovered tallest tropical tree, a 100.8 m Shorea faguetiana. We use terrestrial laser scans, in situ strain gauge data and finite-element simulations to map the architecture of tall broadleaf trees and monitor their response to wind loading. We demonstrate that a trees risk of breaking due to gravity or self-weight decreases with tree height and is much more strongly affected by tree architecture than by material properties. In contrast, wind damage risk increases with tree height despite the larger diameters of tall trees, resulting in a U-shaped curve of mechanical risk with tree height. The relative rarity of extreme wind speeds in north Borneo may be the reason it is home to the tallest trees in the tropics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    1
    Citations
    NaN
    KQI
    []
    Baidu
    map