Global assessment of Mycobacterium avium subspecies hominissuis genetic requirement for growth and virulence.

2019 
Nontuberculous mycobacterial infections caused by the opportunistic pathogen Mycobacterium avium subsp. hominissuis (MAH) are currently receiving renewed attention due to increased incidence combined with difficult treatment. Insights into the disease-causing mechanisms of this species have been hampered by difficulties in genetic manipulation of the bacteria. Here, we identified and sequenced a highly transformable, virulent MAH clinical isolate susceptible to high-density transposon mutagenesis, facilitating global gene disruption and subsequent investigation of MAH gene function. By transposon insertion sequencing (TnSeq) of this strain, we defined the MAH genome-wide genetic requirement for virulence and in vitro growth, and organized ~3500 identified transposon mutants for hypothesis-driven research. The majority (71 %) of the genes we identified as essential for MAH in vitro had a growth-essential mutual ortholog in the related and highly virulent M. tuberculosis (Mtb). However, passaging our library through a mouse model of infection revealed a substantial number (54% of total hits) of novel virulence genes. Strikingly, > 97 % of the MAH virulence genes had a mutual ortholog in Mtb. Two of the three virulence genes specific to MAH (i.e. no Mtb mutual orthologs) were PPE proteins, a family of proteins unique to mycobacteria and highly associated with virulence. Finally, we validated novel genes as required for successful MAH infection; one encoding a probable MFS transporter and another a hypothetical protein located in immediate vicinity of six other identified virulence genes. In summary, we provide new, fundamental insights into the underlying genetic requirement of MAH for growth and host infection.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    80
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map