Nano-bioremediation: A New Age Technology for the Treatment of Dyes in Textile Effluents

2020 
Heterogeneity, recalcitrance, and ubiquitous persistence of textile effluent make it the foulest industrial pollutant which poses a serious threat to soil and water bodies. Textile effluent like all other industrial effluents contributes considerably to environmental pollution. Presence of huge amount of water-soluble unfixed dyes, heavy metals, acids, alkalis, inorganic and organic salts has resulted in a highly concentrated, colored, and complex high strength wastewater that resists degradation. The conventional treatment methods including biological and physicochemical methods for treatment of textile waste are not convincing enough because of low biodegradability of dyes, fouling of filters, high pressure requirement, and generation of sludge containing iron hydroxide. Hence, it has become imperative to seek alternative advanced technology which must be essentially environment competent. Exquisite properties are shown to be possessed by the nanoparticles making it an efficient technology for cleanup of environmental pollutants. Nanoremediation is an upcoming field of research with huge prospects in the treatment of environmental contaminants. In addition to its high reactivity with the contaminants, they also act as suitable carriers for immobilization of whole cells and enzymes. Effluent treatment aided by enzymes has been demonstrated to be effective for recalcitrant pollutants and requires moderate reaction conditions, making them environmentally sound. The generic enzymes sought for the treatment of textile pollutants include most of the peroxidase, cytochrome reductase (Fe III), and oxidoreductase. This chapter extensively covers current know-how of nanoparticles as a carrier for several enzymes for the degradation of pollutants present in textile wastewater. The role of nanoparticle in the removal of dyes is also highlighted.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    158
    References
    9
    Citations
    NaN
    KQI
    []
    Baidu
    map