G-quadruplex-forming nucleic acids interact with SF3B2 and suppress innate immune gene expression.

2020
G-quadruplex (G4), a non-canonical higher-order structure formed by guanine-rich nucleic acid sequences, affects various genetic events in cis, including replication, transcription, and translation. While upregulation of innate immune/interferon stimulated genes (ISGs) is implicated in cancer progression, G4-forming oligonucleotides that mimic telomeric repeat-containing RNA (TERRA) suppress ISG induction in three-dimensional (3D) culture of cancer cells. However, it is unclear how G4 suppresses ISG expression in trans. In this study, we found that G4 binding to splicing factor 3B subunit 2 (SF3B2) downregulated STAT1 phosphorylation and ISG expression in 3D-cultured cancer cells. Liquid chromatography-tandem mass spectrometry analysis identified SF3B2 as a G4-binding protein. Either G4-forming oligonucleotides or SF3B2 knockdown suppressed ISG induction, whereas Phen-DC3, a G4-stabilizing compound, reversed the inhibitory effect of G4-forming oligonucleotides on ISG induction. Phen-DC3 inhibited SF3B2 binding to G4 in vitro. SF3B2-mediated ISG induction appeared to occur independently of RNA splicing because SF3B2 knockdown did not affect pre-mRNA splicing under the experimental conditions, and pharmacological inhibition of splicing by pladienolide B did not repress ISG induction. These observations suggest that G4 disrupts the ability of SF3B2 to induce ISGs in cancer. We propose a new mode for gene regulation, which employs G4 as an inhibitory trans-element.
    • Correction
    • Source
    • Cite
    • Save
    55
    References
    3
    Citations
    NaN
    KQI
    []
    Baidu
    map