Preliminary characterization of the upper haze by SPICAV/SOIR solar occultation in UV to mid‐IR onboard Venus Express

2009 
The Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus/Solar Occultation at Infrared (SPICAV/SOIR) suite of instruments onboard the Venus Express spacecraft comprises three spectrometers covering a wavelength range from ultraviolet to midinfrared and an altitude range from 70 to >100 km. However, it is only recently (more than 1 year after the beginning of the mission) that the three spectrometers can operate simultaneously in the solar occultation mode. These observations have enabled the study of the properties of the Venusian mesosphere over a broad spectral range. In this manuscript, we briefly describe the instrument characteristics and the method used to infer haze microphysical properties from a data set of three selected orbits. Discussion focuses on the wavelength dependence of the continuum, which is primarily shaped by the extinction caused by the aerosol particles of the upper haze. This wavelength dependence is directly related to the effective particle radius (cross section weighted mean radius) of the particles. Through independent analyses for the three channels, we demonstrate the potential to characterize the aerosols in the mesosphere of Venus. The classical assumption that the upper haze is only composed of submicron particles is not sufficient to explain the observations. We find that at high northern latitudes, two types of particles coexist in the upper haze of Venus: mode 1 of mean radius 0.1 ≤ rg ≤ 0.3 μm and mode 2 of 0.4 ≤ rg ≤ 1.0 μm. An additional population of micron-sized aerosols seems, therefore, needed to reconcile the data of the three spectrometers. Moreover, we observe substantial temporal variations of aerosol extinction over a time scale of 24 h.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    75
    Citations
    NaN
    KQI
    []
    Baidu
    map