Optical Mapping Reveals a Large Genetic Inversion between Two Methicillin-Resistant Staphylococcus aureus Strains

2009 
Staphylococcus aureus is a gram-positive bacterium of immense clinical importance. This opportunistic pathogen is capable of causing a wide range of diseases from skin and soft-tissue infections to life-threatening bacteremia, endocarditis, and osteomyelitis (14). Approximately 75% of the S. aureus genome is composed of a core genome that is common in all strains, and 25% of the genome is composed of variable regions which can differ between different strains (4, 16, 24-26). S. aureus evolves primarily by introducing single nucleotide polymorphisms in its core genome and by acquiring mobile genetic elements (MGEs) through horizontal gene transfer. These MGEs include pathogenicity/genomic islands, plasmids, transposons, and bacteriophages that become integrated in the chromosome (4, 11, 16, 31, 32). Despite being a heterogeneous organism, genetic recombination in S. aureus is proposed to be rather rare (20, 24, 29, 35). Its clones are more likely to evolve by point mutations than by recombination events (12). The MGEs contribute to the phenotypic and genotypic diversity seen with the S. aureus population. Acquisition of the staphylococcal cassette chromosome (SCCmec) elements through site-specific recombinases has led to the epidemic of methicillin-resistant S. aureus (MRSA) strains in hospitals and communities all over the world (6, 10, 15). In recent years, the integration of arginine catabolite mobile element in the USA300 lineage of MRSA has been proposed to give the pathogen its epidemiological advantage, including traits for surviving in low-pH conditions and oxygen tension environments (11). In addition, chromosomal replacements have been observed within lineages of sequence type 34 (ST34) and ST42 (34) and ST8 and ST30 (13). Genomic rearrangements, such as inversions, have been observed with genomes of enteric bacteria, such as Salmonella enterica, Shigella flexneri, Yersinia pestis KIM, Escherichia coli (K12 and O157:H7), and group A Streptococcus pyogenes (8, 9, 18, 27, 28, 30, 37). No genomic inversions in S. aureus have been reported to date. With the use of optical mapping, large genomic rearrangements, such as inversions, that would otherwise be missed with other comparative genotyping approaches, including microarray analysis, can be identified. Optical mapping uses high-resolution restriction maps (optical maps) of a bacterial genome to determine its genomic organization (5, 21, 23, 33, 36). These optical maps can be compared to an in silico (virtual) restriction map of a known genome sequence and can be used to identify gene rearrangements and their locations. Using optical mapping in conjunction with subsequent site-specific PCR and sequencing, we report the identification, approximate location, and partial characterization of an ∼500-kb DNA element in NRS387, a USA800 strain that was found to be inverted relative to USA300FPR3757. Identification of IS1181 elements and a novel 73-bp element at both ends of the ∼500-kb element in NRS387 could suggest the possibility of an inversion event in an ancestral strain of NRS387.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    25
    Citations
    NaN
    KQI
    []
    Baidu
    map