Probing the trap states in N–i–P Sb2(S,Se)3 solar cells by deep-level transient spectroscopy

2020 
In this study, we provide fundamental understanding on defect properties of the Sb2(S,Se)3 absorber film and the impact on transmission of photo-excited carriers in N–i–P architecture solar cells by both deep level transient spectroscopy (DLTS) and optical deep level transient spectroscopy (ODLTS) characterizations. Through conductance–voltage and temperature-dependent current–voltage characterization under a dark condition, we find that the Sb2(S,Se)3 solar cell demonstrates good rectification and high temperature tolerance. The DLTS results indicates that there are two types of deep level hole traps H1 and H2 with active energy of 0.52 eV and 0.76 eV in the Sb2(S,Se)3 film, and this defect property is further verified by ODLTS. The two traps hinder the transmission of minority carrier (hole) and pinning the Fermi level, which plays a negative role in the improvement of open-circuit voltage for Sb2(S,Se)3 solar cells. This research suggests a critical direction toward the efficiency improvement of Sb2(S,Se)3 solar cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    2
    Citations
    NaN
    KQI
    []
    Baidu
    map