Trichomonas vaginalis extracellular vesicles are internalized by host cells using proteoglycans and caveolin-dependent endocytosis

2019
Trichomonas vaginalis, a human-infective parasite, causes the most prevalent nonviral sexually transmitted infection worldwide. This pathogen secretes extracellular vesicles(EVs) that mediate its interaction with host cells. Here, we have developed assays to study the interface between parasite EVs and mammalian host cells and to quantify EV internalization by mammalian cells. We show that T. vaginalis EVs interact with glycosaminoglycans on the surface of host cells and specifically bind to heparan sulfate(HS) present on host cell surface proteoglycans. Moreover, competition assays using HS or removal of HS from the host cell surface strongly inhibit EV uptake, directly demonstrating that HS proteoglycansfacilitate EV internalization. We identified an abundant protein on the surface of T. vaginalis EVs, 4-α-glucanotransferase (Tv4AGT), and show using isothermal titration calorimetrythat this protein binds HS. Tv4AGT also competitively inhibits EV uptake, defining it as an EV ligand critical for EV internalization. Finally, we demonstrate that T. vaginalis EV uptake is dependent on host cell cholesterol and caveolin-1 and that internalization proceeds via clathrin-independent, lipid raft-mediated endocytosis. These studies reveal mechanisms used to drive host:pathogen interactions and further our understanding of how EVs are internalized by target cells to allow cross-talk between different cell types.
    • Correction
    • Source
    • Cite
    • Save
    61
    References
    19
    Citations
    NaN
    KQI
    []
    Baidu
    map