Colicin E1 binds to TolC as an open hinge to penetrate the outer-membrane

2021
The double membrane architecture of Gram-negative bacteria forms a barrier that is effectively impermeable to extracellular threats. Bacteriocin proteins evolved to exploit the accessible, surface-exposed proteins embedded in the outer membrane to deliver cytotoxic cargo. Colicin E1 is a bacteriocin produced by, and lethal to, Escherichia coli that hijacks the outer membrane proteins TolC and BtuB to enter the cell. Here we capture the colicin E1 translocation domain inside its membrane receptor, TolC, by high-resolution cryoEM. Colicin E1 binds stably to TolC as an open hinge through the TolC pore - an architectural rearrangement from colicin E1 unbound conformation. This binding is stable in live E. coli cells as indicated by single-molecule fluorescence microscopy. Finally, colicin E1 fragments binding to TolC plugs the channel, inhibiting its native efflux function as an antibiotic efflux pump and heightening susceptibility to four antibiotic classes.
    • Correction
    • Source
    • Cite
    • Save
    0
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map