Reproducibility and monitoring of the instrumental particle background for the X-Ray Integral Field Unit.

2018 
The X-ray Integral Field Unit (X-IFU) is the cryogenic imaging spectrometer on board the future X-ray observatory \textsl{Athena}. With a hexagonal array of 3840 AC-biased Transition Edge Sensors (TES), it will provide narrow-field observations (5$^{\prime}$ equivalent diameter) with unprecedented high spectral resolution (2.5 eV up to 7 keV) over the 0.2 - 12 keV bandpass. Throughout its observations, the X-IFU will face various sources of X-ray background. Specifically, the so-called Non-X-ray Background (NXB) caused by the interaction of high-energy cosmic rays with the instrument, may lead to a degradation of its sensitivity in the observation of faint extended sources (e.g. galaxy clusters outskirts). To limit this effect, a cryogenic anti-coincidence detector (CryoAC) will be placed below the detector plane to lower the NXB level down to the required level of $5 \times 10^{-3}$ cts/s/cm$^{2}$/keV over 2 - 10 keV. In this contribution, we investigate ways to accurately monitor the NXB and ensure the highest reproducibility in-flight. Using the limiting science case of the background-dominated observation of galaxy clusters outskirts, we demonstrate that a reproducibility of 2\% on the absolute knowledge of the background is required to perform driving science objectives, such as measuring abundances and turbulence in the outskirts. Monitoring of the NXB in-flight through closed observations, the detector's CryoAC or the companion instrument (Wide Field Imager) will be used to meet this requirement.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map