Electro and Light Active Actuators Based on Reversible Shape-Memory Polymer Composites with Segregated Conductive Networks

2019 
Reversible shape-memory polymers (RSMPs) show great potential in actuating applications because of its repeatability among many other advantages. Indeed, in many cases, multiresponsive RSMPs are more expected, and the strategy to introduce functional fillers without deteriorating the reversible deformation performance is of great importance. Here, a facile strategy to balance the electro, photothermal performance, and molecular chain mobility is reported. Segregated conductive networks of carbon nanotubes (S-CNTs) are constructed in the poly(ethylene-co-octene) (POE) matrix at a relatively low filler loading, which renders the composite good electrical, photothermal, and actuating properties. A low percolation threshold of 0.25 vol % is achieved. The electrical conductivity is up to 0.046 S·cm–1 for the POE/S-CNT composites with 2 vol % CNT, and the absorption of light (760 nm) is above 90%. These characteristics guarantee that the actuator can be driven at low voltage (≤36 V) and suitable light intensity...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    28
    Citations
    NaN
    KQI
    []
    Baidu
    map