Calibration of the process-based model 3-PG for major central European tree species

2021
Process-based forest models are important tools for predicting forest growth and their vulnerability to factors such as climate change or responses to management. One of the most widely used stand-level process-based models is the 3-PG model (Physiological Processes Predicting Growth), which is used for applications including estimating wood production, carbon budgets, water balance and susceptibility to climate change. Few 3-PG parameter sets are available for central European species and even fewer are appropriate for mixed-species forests. Here we estimated 3-PG parameters for twelve major central European tree species using 1418 long-term permanent forest monitoring plots from managed forests, 297 from un-managed forest reserves and 784 Swiss National Forest Inventory plots. A literature review of tree physiological characteristics, as well as regression analyses and Bayesian inference, were used to calculate the 3-PG parameters. The Swiss-wide calibration, based on monospecific plots, showed a robust performance in predicting forest stocks such as stem, foliage and root biomass. The plots used to inform the Bayesian calibration resulted in posterior ranges of the calibrated parameters that were, on average, 69% of the prior range. The bias of stem, foliage and root biomass predictions was generally less than 20%, and less than 10% for several species. The parameter sets also provided reliable predictions of biomass and mean tree sizes in mixed-species forests. Given that the information sources used to develop the parameters included a wide range of climatic, edaphic and management conditions and long time spans (from 1930 to present), these species parameters for 3-PG are likely to be appropriate for most central European forests and conditions.
    • Correction
    • Source
    • Cite
    • Save
    57
    References
    7
    Citations
    NaN
    KQI
    []
    Baidu
    map