Genetic aberrations in iPSCs are introduced by a transient G1/S cell cycle checkpoint deficiency

2020
A number of point mutations have been identified in reprogrammed pluripotent stem cells such as iPSCs and ntESCs. The molecular basis for these mutations has remained elusive however, which is a considerable impediment to their potential medical application. Here we report a specific stage at which iPSC generation is not reduced in response to ionizing radiation, i.e. radio-resistance. Quite intriguingly, a G1/S cell cycle checkpoint deficiency occurs in a transient fashion at the initial stage of the genome reprogramming process. These cancer-like phenomena, i.e. a cell cycle checkpoint deficiency resulting in the accumulation of point mutations, suggest a common developmental pathway between iPSC generation and tumorigenesis. This notion is supported by the identification of specific cancer mutational signatures in these cells. We describe efficient generation of human integration-free iPSCs using erythroblast cells, which have only a small number of point mutations and INDELs, none of which are in coding regions. Point mutations have been found in induced pluripotent stem cells (iPSCs) but when they arise is unclear. Here, the authors show that a G1/S cell cycle checkpoint deficiency transiently occurs early in genome reprogramming, suggesting a common developmental pathway between iPSC and tumorigenesis, and generate genetic burden-free human iPSCs.
    • Correction
    • Source
    • Cite
    • Save
    75
    References
    8
    Citations
    NaN
    KQI
    []
    Baidu
    map