Milagro Limits and HAWC Sensitivity for the Rate Density of Evaporating Primordial Black Holes

2015
Abstract Primordial Black Holes(PBHs) are gravitationally collapsed objects that may have been created by density fluctuations in the early universe and could have arbitrarily small masses down to the Planck scale. Hawking showed that due to quantum effects, a black hole has a temperature inversely proportional to its mass and will emit all species of fundamental particles thermally. PBHs with initial masses of ∼5.0 × 10 14 g should be expiring in the present epoch with bursts of high-energy particles, including gamma radiation in the GeV–TeV energy range. The Milagrohigh energy observatory, which operated from 2000 to 2008, is sensitive to the high end of the PBH evaporation gamma-ray spectrum. Due to its large field-of-view, more than 90% duty cycle and sensitivity up to 100 TeV gamma rays, the Milagro observatoryis well suited to perform a search for PBH bursts. Based on a search on the Milagrodata, we report new PBH burst ratedensity upper limits over a range of PBH observation times. In addition, we report the sensitivity of the Milagrosuccessor, the High Altitude Water Cherenkov (HAWC) observatory, to PBH evaporation events.
    • Correction
    • Source
    • Cite
    • Save
    37
    References
    27
    Citations
    NaN
    KQI
    []
    Baidu
    map