Hormonal diterpenoids distinct to gibberellins regulate protonema differentiation in the moss physcomitrium patens.

2020 
Plants synthesize gibberellin (GA), a diterpenoid hormone, via ent-kaurenoic acid (KA) oxidation. GA has not been detected in the moss Physcomitrium patens despite its ability to synthesize KA. It was recently shown that a KA-metabolite, 3OH-KA, was identified as an active regulator of protonema differentiation in P. patens. An inactive KA-metabolite, 2OH-KA, was also identified in the moss, as was KA2ox, which is responsible for converting KA to 2OH-KA. In this review, we mainly discuss the GA biosynthetic gene homologs identified and characterized in bryophytes. We show the similarities and differences between the OH-KAs control of moss and GA control of flowering plants. We also discuss using recent genomic studies; mosses do not contain KAO, even though other bryophytes do. This absence of KAO in mosses corresponds to the presence of KA2ox, which is absent in other vascular plants. Thus given that 2OH-KA and 3OH-KA were isolated from ferns and flowering plants, respectively, vascular plants may have evolved from ancestral bryophytes that originally produced 3OH-KA and GA.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    2
    Citations
    NaN
    KQI
    []
    Baidu
    map