Use of plastid genome sequences in phylogeographic studies of tree species can be misleading without comprehensive sampling of co-occurring, related species

2021
We aimed to test the extent to which plastid DNA gives incongruent phylogeographic patterns to nuclear DNA in a species of eucalypt, Eucalyptus behriana, a taxonomic group where chloroplast capture is a well-established phenomenon. Furthermore, we aimed to test the degree of influence chloroplast capture has on the observed patterns by broadly sampling co-occurring, related species. A genome skimming approach was used to sequence and assemble chloroplast genomes from population-level sampling of E. behriana, as well as samples of twenty-one other Eucalyptus section Adnataria species which co-occur with it. Phylogenetic analyses were first undertaken on just E. behriana to allow direct comparison to previously reported phylogeographic patterns based upon nuclear markers. A subsequent analysis including the related taxa was undertaken to investigate the degree of chloroplast capture and how this may be influencing the observed phylogeographic patterns. We found strong geographic structuring of plastid DNA relationships across the geographic range of E. behriana, with a basal divergence between the most northerly isolated population at West Wyalong and all other populations which does not match phylogeographic patterns based on nuclear markers. When outgroups were included, we found that E. behriana is highly polyphyletic with respect to all other species, starkly contrasting with the species well-supported monophylly based upon nuclear markers, and that chloroplast capture is so widespread that geographic patterns of the plastid genomes are consistent across species boundaries.
    • Correction
    • Source
    • Cite
    • Save
    49
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map