The dual anti-caries effect of carboxymethyl chitosan nanogel loaded with chimeric lysin ClyR and amorphous calcium phosphate.

2021 
In this study, we evaluated the anti-biofilm and anti-demineralization abilities of a novel material, CMC-ClyR-ACP nanogel, designed by loading the chimeric lysin ClyR and amorphous calcium phosphate (ACP) into a nanocarrier material carboxymethyl chitosan (CMC), in a demineralization model. Dynamic light scattering, transmission electron microscopy, and Fourier transmission infrared spectroscopy showed that CMC-ClyR-ACP nanogel was synthesized successfully. Enamel samples prepared from premolars were divided into five groups according to their treatments with: (i) double distilled water ddH2 O, (ii) CMC-ACP, (iii) CMC-ClyR-ACP, (iv) ClyR, or (v) 0.12% chlorhexidine. Streptococcus mutans was allowed to form biofilms on the teeth for two days before treatment procedures were carried out from day 3 to day 6. The relative biofilm viability analyzed by Cell Counting Kit-8 showed that it was significantly lower (at 55.7%) for CMC-ClyR-ACP than seen for ddH2 O (89.9%), which was consistent with result of confocal laser scanning microscopy. The percentage surface hardness loss of CMC-ClyR-ACP (29.2%) was significantly lower than that of CMC-ACP (51.0%) and ClyR (58.7%) alone, and there was no significant difference between CMC-ClyR-ACP and chlorhexidine (26.9%), which was confirmed by scanning electron microscopy. Therefore, CMC-ClyR-ACP nanogel may be an effective strategy for the control of enamel demineralization.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map