Age-associated bladder and urethral coordination impairment and changes in urethral oxidative stress in rats

2021
Abstract Aims We examined age-associated changes in bladder and urethral coordination involving the nitric oxide (NO)/soluble guanylyl cyclase (sGC) system, which induces urethral smooth muscle relaxation, and urethral ischemic/oxidative stress changes in rats. Main methods Sixteen female Sprague-Dawley rats were divided into young (3 months old) and middle-aged (12–15 months old) groups. Urethral activity was evaluated by simultaneously recording intravesical pressure under isovolumetric conditions and urethral perfusion pressure (UPP) under urethane anesthesia. Sodium nitroprusside (SNP, 0.1 mg/kg), an NO donor, and BAY 41-2272, a novel NO-independent stimulator of sGC (0.1 mg/kg), were administered intravenously to both groups. N-nitro- l -arginine methyl ester hydrochloride ( l -NAME, 100 mg/kg) was also injected intravenously, to inhibit NO synthase activity in both groups. Staining for the ischemic marker, hypoxia-inducible factor-1α (HIF-1α), and the oxidative stress markers, 8-hydroxy-2′-deoxyguanosine (8-OHdG) and malondialdehyde (MDA), was performed on tissue sections of the urethra, in both groups. Key findings Baseline UPP and UPP changes were significantly lower in middle-aged rats than in young rats. After administration of SNP and BAY 41-2272, baseline UPP and UPP nadir were significantly decreased in both groups. After administration of l -NAME, UPP change/bladder contraction amplitude in young rats was still lower than at baseline but was completely restored to control levels in middle-aged rats. Immunoreactivity of HIF-1α, 8-OHdG, and MDA was higher in middle-aged rats than in young rats. Significance Age-associated ischemic and oxidative stress in the urethra might be correlated with impairment of the NO/sGC system and with coordination of the bladder and urethra.
    • Correction
    • Source
    • Cite
    • Save
    29
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map