Quantifying nitrogen uptake and translocation for mature trees: an in situ whole tree paired 15N labeling method.

2021
Nitrogen (N) is one of the major nutrients limiting plant growth in terrestrial ecosystems. To avoid plant-microbe competition, previous studies on plant N uptake preference often used hydroponic experiments on fine roots of seedlings and demonstrated ammonium preference for conifer species; however, we lack information about N uptake and translocation in the field. In this paper, we described a method of in situ paired 15N labeling and reported rates and the time course of N uptake and translocation by mature trees in situ. We added 15N-enriched ammonium or nitrate, together with the nitrification inhibitor dicyandiamide, to paired Larix kaempferi (larch) trees from 30-, 40-, and 50-year-old plantations. Fine roots, coarse roots, leaves, and small branches were collected 2, 4, 7, 14 and 30 days after labeling. Nitrate uptake and translocation averaged 1.59 ± 0.16 μg 15N g-1 d-1, slightly higher than ammonium (1.08 ± 0.10 μg 15N g-1 d-1), in all tree organs. Nitrate contributed 50% to 78% to N uptake and translocation, indicating efficient nitrate use by larch in situ. We observed no age effect. We suggest that sampling leaves after 4 days of 15N labeling is sufficient to detect mature tree N uptake preference in situ. Whole tree 15N-ammonium recovery equaled that of 15N-nitrate 30 days after 15N addition, implying the importance of both ammonium and nitrate to mature larch N use in the long run. We conclude that our method is promising for studying mature tree N uptake preference in situ and can be applied to other conifer and broadleaf species. We suggest using highly enriched 15N tracer to overcome soil dilution and a nitrification inhibitor to minimize ammonium transformation to nitrate. Our study revealed mature tree N preference in situ and demonstrated the strong contribution of nitrate towards mature larch growth on soils rich in nitrate.
    • Correction
    • Source
    • Cite
    • Save
    78
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map