Characterization of flame coated nanoparticle surfaces with antibacterial properties and the heat-induced embedding in thermoplastic-coated paper

2019
Silver nanoparticlesdeposited on surfaces can provide an antibacterial effect with potential uses in, for example, healthcare settings. However, release of nanoparticles and their potential exposure to the environment is of concern. The current work demonstrates a continuous synthesis that simultaneously deposits silver nanoparticlesonto plastic coated papersurface by utilizing the liquid flame spray (LFS) aerosol process. Heat from LFS is used to soften the thermoplastic paper surface, which enables partial and full embedding of the nanoparticles, thereby improving adhesion. The embedding is confirmed with atomic force and scanning electron microscopy, and the deposited silver amounts are quantified with X-ray photoelectron spectroscopy. The results suggest that embedding was more effective in PE- coated papersamples due to the lower glass transition temperature when compared to PET- coated papersamples. The antibacterial properties of the surfaces against E. coli and S. aureus were maintained and confirmed with a previously developed ‘Touch-Test Method’. The LFS process has the potential to be used for large-scale manufacturing of antibacterial surfaces with improved nanoparticle adhesion on appropriately chosen thermoplastic surfaces.
    • Correction
    • Source
    • Cite
    • Save
    40
    References
    1
    Citations
    NaN
    KQI
    []
    Baidu
    map