Protein-controlled Actuation of Dynamic Nucleic Acid Networks Using Synthetic DNA Translators.

2020
Integrating dynamic DNA nanotechnology with protein-controlled actuation will expand our ability to process molecular information. We have developed a strategy to actuate strand displacement reactions using DNA-binding proteins by engineering synthetic DNA translators that convert specific protein-binding events into trigger inputs through a programmed conformational change. We have constructed synthetic DNA networks responsive to two different DNA-binding proteins, TATA-binding protein and Myc-Max, and demonstrated multi-input activation of strand displacement reactions. We finally achieved protein-controlled regulation of a synthetic RNA and of an enzyme through artificial DNA-based communication, showing the potential of our molecular system in performing further programmable tasks.
    • Correction
    • Source
    • Cite
    • Save
    39
    References
    2
    Citations
    NaN
    KQI
    []
    Baidu
    map