Uptake and release profiles of PEGylated liposomal doxorubicin nanoparticles: A comprehensive picture based on separate determination of encapsulated and total drug concentrations in tissues of tumor-bearing mice

2020 
Abstract The PEGylated liposomal nanoparticle has been widely used as a carrier in drug delivery system. To become biologically active, the encapsulated drug must be released from the nanoparticle vehicle. However, due to limitations of current bioanalytical methods, the characterization of this release process has been restricted to determination of total drug in tissues and tumor. As a result, the fate of liposomal nanoparticles including their uptake into target tissue has not been fully characterized. In this study, we developed a novel two-step solid phase extraction on two separated columns procedure to separate liposomes from tissues and tumors without liposomal leakage. This allowed us to determine encapsulated drug, total drug and, by difference, released drug and compare the release and uptake profiles of PEGylated liposomal doxorubicin in tissues and tumor of tumor-bearing mice with corresponding profiles for free doxorubicin. The liposomal nanoparticles released doxorubicin into tumor efficiently and, compared with administration of free drug, increased doxorubicin uptake into tumor by 1.8-fold. It also decreased doxorubicin uptake into heart (0.78-fold lower) with the potential to reduce doxorubicin cardiotoxicity. Drug release reached constant levels in tissues and tumor after 12 h with released doxorubicin concentration remaining at 70–80% of total doxorubicin concentration and in tumor at 86% of total drug concentration. The assay also included determination of the main doxorubicin metabolites. Determination of the metabolites showed that liposomal entrapment delays and decreases the metabolism of doxorubicin but does not alter the metabolic pathway. These results provide a clear and comprehensive picture of the biodistribution of doxorubicin administered in liposomal nanoparticles which may assist in the rational design of other liposomal nanoparticles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    7
    Citations
    NaN
    KQI
    []
    Baidu
    map