Large Orbital Magnetic Moment and Strong Perpendicular Magnetic Anisotropy in Heavily-Intercalated Fe$_{x}$TiS$_2$.

2021
Titanium disulfide TiS$_2$, which is a member of layered transition-metal dichalcogenides with the 1T-CdI$_2$-type crystal structure, is known to exhibit a wide variety of magnetism through intercalating various kinds of transition-metal atoms of different concentrations. Among them, Fe-intercalated titanium disulfide Fe$_x$TiS$_2$ is known to be ferromagnetic with strong perpendicular magnetic anisotropy (PMA) and large coercive fields ($H_\text{c}$). In order to study the microscopic origin of the magnetism of this compound, we have performed x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) measurements on single crystals of heavily-intercalated Fe$_x$TiS$_2$ ($x\sim0.5$). The grown single crystals showed a strong PMA with a large $H_\text{c}$ of $\mu_0H_\text{c} \simeq 1.0\ \text{T}$. XAS and XMCD spectra showed that Fe is fully in the valence states of 2+ and that Ti is in an itinerant electronic state, indicating electron transfer from the intercalated Fe atoms to the host TiS$_2$ bands. The Fe$^{2+}$ ions were shown to have a large orbital magnetic moment of $\simeq 0.59\ \mu_\text{B}\text{/Fe}$, to which, combined with the spin-orbit interaction and the trigonal crystal field, we attribute the strong magnetic anisotropy of Fe$_x$TiS$_2$.
    • Correction
    • Source
    • Cite
    • Save
    48
    References
    1
    Citations
    NaN
    KQI
    []
    Baidu
    map