SSCC: A Novel Computational Framework for Rapid and Accurate Clustering Large-scale Single Cell RNA-seq Data.

2019 
Abstract Clustering is a prevalent analytical means to analyze single cell RNA sequencing (scRNA-seq) data but the rapidly expanding data volume can make this process computationally challenging. New methods for both accurate and efficient clustering are of pressing need. Here we proposed Spearman subsampling -clustering- classification (SSCC), a new clustering framework based on random projection and feature construction, for large-scale scRNA-seq data. SSCC greatly improves clustering accuracy, robustness, and computational efficacy for various state-of-the-art algorithms benchmarked on multiple real datasets. On a dataset with 68,578 human blood cells, SSCC achieved 20% improvement for clustering accuracy and 50-fold acceleration, but only consumed 66% memory usage, compared to the widelyused software package SC3. Compared to k -means, the accuracy improvement of SSCC can reach 3-fold. An R implementation of SSCC is available at https://github.com/Japrin/sscClust .
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    17
    Citations
    NaN
    KQI
    []
    Baidu
    map