Virtual screening and design with machine intelligence applied to Pim‐1 kinase inhibitors

2020 
Ligand-based virtual screening of large compound collections, combined with fast bioactivity determination, facilitate the discovery of bioactive molecules with desired properties. Here, chemical similarity based machine learning and label-free differential scanning fluorimetry were used to rapidly identify new ligands of the anticancer target Pim-1 kinase. The three-dimensional crystal structure complex of human Pim-1 with ligand bound revealed an ATP-competitive binding mode. Generative de novo design with a recurrent neural network additionally suggested innovative molecular scaffolds. Results corroborate the validity of the chemical similarity principle for rapid ligand prototyping, suggesting the complementarity of similarity-based and generative computational approaches.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    2
    Citations
    NaN
    KQI
    []
    Baidu
    map