High genetic barrier to escape from human polyclonal SARS-CoV-2 neutralizing antibodies

2021
The number and variability of the neutralizing epitopes targeted by polyclonal antibodies in SARS-CoV-2 convalescent and vaccinated individuals are key determinants of neutralization breadth and, consequently, the genetic barrier to viral escape. Using chimeric viruses and antibody-selected viral mutants, we show that multiple neutralizing epitopes, within and outside the viral receptor binding domain (RBD), are variably targeted by polyclonal plasma antibodies and coincide with sequences that are enriched for diversity in natural SARS-CoV-2 populations. By combining plasma-selected spike substitutions, we generated synthetic ‘polymutant’ spike proteins that resisted polyclonal antibody neutralization to a similar degree as currently circulating variants of concern (VOC). Importantly, by aggregating VOC-associated and plasma-selected spike substitutions into a single polymutant spike protein, we show that 20 naturally occurring mutations in SARS-CoV-2 spike are sufficient to confer near-complete resistance to the polyclonal neutralizing antibodies generated by convalescents and mRNA vaccine recipients. Strikingly however, plasma from individuals who had been infected and subsequently received mRNA vaccination, neutralized this highly resistant SARS-CoV-2 polymutant, and also neutralized diverse sarbecoviruses. Thus, optimally elicited human polyclonal antibodies against SARS-CoV-2 should be resilient to substantial future SARS-CoV-2 variation and may confer protection against future sarbecovirus pandemics.
    • Correction
    • Source
    • Cite
    • Save
    28
    References
    5
    Citations
    NaN
    KQI
    []
    Baidu
    map