We Can Pay Less: Coordinated False Data Injection Attack Against Residential Demand Response in Smart Grids

2021 
Advanced metering infrastructure, along with home automation processes, is enabling more efficient and effective demand-side management opportunities for both consumers and utility companies. However, tight cyber-physical integration also enables novel attack vectors for false data injection attacks (FDIA) as home automation/ home energy management systems reside outside the utilities' control perimeter. Authentic users themselves can manipulate these systems without causing significant security breaches compared to traditional FDIAs. This work depicts a novel FDIA that exploits one of the commonly utilised distributed device scheduling architectures. We evaluate the attack impact using a realistic dataset to demonstrate that adversaries gain significant benefits, independently from the actual algorithm used for optimisation, as long as they have control over a sufficient amount of demand. Compared to traditional FDIAs, reliable security mechanisms such as proper authentication, security protocols, security controls or, sealed/controlled devices cannot prevent this new type of FDIA. Thus, we propose a set of possible impact alleviation solutions to thwart this type of attack.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map