Gain of electron orbital angular momentum in a direct laser acceleration process

2020
Three-dimensional "particle in cell" simulations show that a quasistatic magnetic field can be generated in a plasma irradiated by a linearly polarized Laguerre-Gauss beam with a nonzero orbital angular momentum (OAM). Perturbative analysis of the electron dynamics in the low intensity limit and detailed numerical analysis predict a laser to electrons OAM transfer. Plasma electrons gain angular velocity thanks to the dephasing process induced by the combined action of the ponderomotive force and the laser induced-radial oscillation Similar to the "direct laser acceleration," where Gaussian laser beams transmit part of its axial momentum to electrons, Laguerre-Gaussian beams transfer a part of their orbital angular momentum to electrons through the dephasing process.
    • Correction
    • Source
    • Cite
    • Save
    18
    References
    8
    Citations
    NaN
    KQI
    []
    Baidu
    map