An Industrial Quadrotor UAV Control Method Based on Fuzzy Adaptive Linear Active Disturbance Rejection Control

2021
In this paper, a fuzzy adaptive linear active disturbance rejection control (Fuzzy-LADRC) is proposed for strong coupling and nonlinear quadrotor unmanned aerial vehicle (UAV). At present, UAV conveys new opportunities in the industry, such as power line inspection, petroleum conduit patrolling, and defects detection for the wind turbine, because of its advantages in flexibility, high efficiency, and economy. Usually, the scene of the UAV mission has a high risk, and there are internal sensor noise and unknown external disturbance. Thus, the attitude stability and anti-interference ability of UAV are especially essential. To solve the strong coupling problem of UAV, the dynamics model of UAV is established via the Newton-Euler method, and the coupling part of dynamics is modeled as an internal disturbance. According to the function of linear active disturbance rejection control (LADRC) parameters, a Fuzzy-LADRC is proposed to improve the dynamic performance of the system. The proposed control method makes full use of the adaptive ability of the fuzzy controller and the anti-interference ability of LADRC to the nonlinear and strong coupling systems. As we know, this is the first time that Fuzzy-LADRC has been used in UAV control. In the simulation, the performance indicators of four controllers, including Fuzzy-LADRC, LADRC, PID, and Fuzzy-PID are compared and analyzed. The results indicate that the average response speed of Fuzzy-LADRC is 12.65% faster than LADRC, and it is 29.25% faster than PID. The average overshoot of Fuzzy-LADRC is 17% less than LADRC and 77.75% less than PID. The proposed control method can significantly improve the response speed and anti-interference ability of UAV.
    • Correction
    • Source
    • Cite
    • Save
    41
    References
    5
    Citations
    NaN
    KQI
    []
    Baidu
    map