Significant differences in fecal microbiota are associated with various stages of glucose tolerance in African American male veterans

2015
The importance of gut microbiota in pathogenesis of diabetes remains unknown. This study investigated the relationship between microbiota and metabolic markers in African American men (AAM) with prediabetesand hypovitaminosisD. The study was ancillary to a randomized trial of vitamin D supplementation with weekly ergocalciferol(50,000 IU) conducted in AAM veterans over 12 months (D Intervention in Veterans Affairs). Glycemic groups (Gr) were characterized based on changes in oral glucose tolerance between baseline and exit. Subjects with stable normal glucose tolerance were assigned to Gr-1 and those with stable prediabetes( impaired glucose toleranceand impaired fasting glucose) to Gr-2. Microbiota composition was analyzed in stool collected at the exit (n = 115) and compared between Gr-1 and Gr-2, as well as between the lowest and highest quartilesof dietary intake of energy and fat, hemoglobin A1c, and serum 25-hydroxyvitamin D (25[OH]D) level. Differences between Gr-1 and Gr-2 included the Bacteroidetes/ Firmicutesand Bacteroidales/ Clostridiaratios and differences in genera such as Ruminococcusand Dialister. Changes in specific taxa associated with the lowest and highest quartilesof 25(OH)D (eg, Ruminococcus, Roseburia, Blautia , Dorea ) were clearly distinct from those of dietary intake (eg, Bacteroides, Bacteroides/ Prevotellaratio) or A1c (eg, Faecalibacterium , Catenibacterium, Streptococcus ). These findings suggest a novel interaction between microbiota and vitamin D and a role for microbiota in early stages of diabetes development. Although results suggest that specific taxa are associated with glycemic stability over time, a causative relationship between microbiota makeup and dysglycemia is still to be demonstrated.
    • Correction
    • Source
    • Cite
    • Save
    67
    References
    41
    Citations
    NaN
    KQI
    []
    Baidu
    map