Regulatory roles of claudin-1 in cell adhesion and microvilli formation.

2021 
Aberrant expression of tight junction proteins has recently been focused on in the cancer research field. We previously showed that claudin-1 is aberrantly expressed from an early stage of uterine cervical adenocarcinoma and contributes to malignant potentials. To elucidate the molecular mechanisms underlying tumor-promoting roles of claudin-1, we established and analyzed claudin-1 knockout cells. Knockout of claudin-1 suppressed conventional tight junctional functions, barrier and fence functions, and expression of cell adhesion-associated proteins including E-cadherin. Comparative proteome analysis revealed that expression of claudin-1 affected expression of a wide range of proteins, especially proteins that are associated with cell adhesion and actin cytoskeleton remodeling. Interactome analysis of the identified proteins revealed that E-cadherin and focal adhesion kinase play central roles in the claudin-1-dependently affected protein network. Moreover, knockout of claudin-1 significantly suppressed microvilli formation and activity of Ezrin/Radixin/Moesin. Taken together, the results indicate that expression of claudin-1 affects not only conventional tight junction function but also expression and activity of a wide range of proteins, especially proteins that are associated with cell adhesion and actin cytoskeleton remodeling, to contribute to malignant potentials and microvilli formation in cervical adenocarcinoma cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    1
    Citations
    NaN
    KQI
    []
    Baidu
    map