Plasmin-mediated cleavage of EphA4 at central amygdala inhibitory synapses controls anxiety

2021 
Severe stress can trigger complex behavioural changes such as high anxiety (1). Inhibitory GABA-ergic interneurons in the lateral division of the central amygdala (CEl) control anxiety through feedforward inhibition of their target cells in the medial division (CEm) (2, 3). In particular, PKC{delta}-positive (PKC{delta}+) interneurons in CEl are critical elements of the neuronal circuitry of fear and anxiety (3-5), but the molecular mechanisms they employ are poorly understood. Here, we show that, during stress, GABA-ergic synapses of amygdala PKC{delta}+ interneurons are regulated by a serine protease plasmin. On stress, plasmin cleaves the extracellular portion of the tyrosine kinase receptor EphA4 triggering its dissociation from gephyrin, a postsynaptic GABA-receptor anchoring protein. Dynamic EphA4/gephyrin interaction leads to modification of dendritic spine morphology and synaptic GABA-receptor expression profile. Consistent with the critical role for the plasmin/EphA4/gephyrin signalling axis in anxiogenesis, viral delivery of plasmin-resistant (prEphA4) form of EphA4 into the central amygdala prevents the development of stress-induced anxiety in mice, while the delivery of plasmin-truncated EphA4 (tEphA4) dramatically enhances this effect. Thus, our studies identify a novel, critical molecular cascade regulating GABA-ergic signalling in the central amygdala synapses that allows bidirectional switching of animal behaviour from high to low anxiety states.
    • Correction
    • Source
    • Cite
    • Save
    49
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map