Three-Dimensional Differentiation of Human Pluripotent Stem Cell-Derived Neural Precursor Cells Using Tailored Porous Polymer Scaffolds

2019 
This study investigates the utility of a novel poly(ethylene glycol) diacrylate-crosslinked porous polymeric tissue engineering scaffold, with mechanical properties specifically optimised to be comparable to that of mammalian brain tissue for 3D human neural cell culture. Results obtained here demonstrate the attachment, proliferation and terminal differentiation of both human induced pluripotent stem cell- and embryonic stem cell-derived neural precursor cells (hPSC-NPCs) throughout the interconnected porous network within laminin-coated scaffolds. Phenotypic data and functional analyses are presented demonstrating that this material supports terminal in vitro neural differentiation of hPSC-NPCs to a mixed population of viable neuronal and glial cells for periods of up to 49 days. This is evidenced by the upregulation of TUBB3, MAP2, SYP and GFAP gene expression, as well as the presence of the proteins βIII-TUBULIN, NEUN, MAP2 and GFAP. Functional maturity of neural cells following 49 days 3D differentiation culture was tested via measurement of intracellular calcium. These analyses revealed spontaneously active, synchronous and rhythmic calcium flux, as well as response to the neurotransmitter glutamate. This novel construct has potential application as an improved in vitro human neurogenesis model with utility in platform drug discovery programs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map