Asynchronous Massive Access and Neighbor Discovery Using OFDMA.

2021
The fundamental communication problem in the wireless Internet of Things (IoT) is to discover a massive number of devices and to allow them reliable access to shared channels. Oftentimes these devices transmit short messages randomly and sporadically. This paper proposes a novel signaling scheme for grant-free massive access, where each device encodes its identity and/or information in a sparse set of tones. Such transmissions are implemented in the form of orthogonal frequency-division multiple access (OFDMA). Under some mild conditions and assuming device delays to be bounded unknown multiples of symbol intervals, sparse OFDMA is proved to enable arbitrarily reliable asynchronous device identification and message decoding with a codelength that is O(K(log K + log S + log N)), where N denotes the device population, K denotes the actual number of active devices, and log S is essentially equal to the number of bits a device can send (including its identity). By exploiting the Fast Fourier Transform (FFT), the computational complexity for discovery and decoding can be made to be sub-linear in the total device population. To prove the concept, a specific design is proposed to identify up to 100 active devices out of $2^{38}$ possible devices with up to 20 symbols of delay and moderate signal-to-noise ratios and fading. The codelength compares much more favorably with those of standard slotted ALOHA and carrier-sensing multiple access (CSMA) schemes.
    • Correction
    • Cite
    • Save
    41
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map