Observations of an Electron-cold Ion Component Reconnection at the Edge of an Ion-scale Antiparallel Reconnection at the Dayside Magnetopause.

2021 
Solar wind parameters play a dominant role in reconnection rate, which controls the solar wind-magnetosphere coupling efficiency at Earth's magnetopause. Besides, low-energy ions from the ionosphere, frequently detected on the magnetospheric side of the magnetopause, also affect magnetic reconnection. However, the specific role of low-energy ions in reconnection is still an open question under active discussion. In the present work, we report in situ observations of a multiscale, multi-type magnetopause reconnection in the presence of low-energy ions using NASA's Magnetospheric Multiscale data on 11 September 2015. This study divides ions into cold and hot populations. The observations can be interpreted as a secondary reconnection dominated by electrons and cold ions located at the edge of an ion-scale reconnection. This analysis demonstrates a dominant role of cold ions in the secondary reconnection without hot ions' response. Cold ions and electrons are accelerated and heated by the secondary process. The case study provides observational evidence for the simultaneous operation of antiparallel and component reconnection. Our results imply that the pre-accelerated and heated cold ions and electrons in the secondary reconnection may participate in the primary ion-scale reconnection affecting the solar wind-magnetopause coupling and the complicated magnetic field topology affect the reconnection rate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []
    Baidu
    map