Immediate changes in cardiac autonomic tone and stroke volume during microgravity simulation using head-down tilt

2021 
Objectives: Gravity plays an important role in the day-to-day functioning of the cardiovascular system (CVS) in the human body. The absence of gravity severely affects CVS functioning. Out of existing simulation models of microgravity, the 6° head-down tilt (HDT) is frequently used analog to replicate the physiological effects of microgravity on earth. Materials and Methods: The present study has been designed to determine the specificity of 6° HDT usage as a microgravity simulation. The heart rate variability (HRV), blood pressure (BP), cardiac output (CO), and stroke volume (SV) responses to 5 min exposures were investigated for 4°, 6°, and 8° HDT. It was hypothesized that the graded HDT around 6° will demonstrate reversal of autonomic parameters. The study was conducted on 28 male subjects aged 20–30 years. Results: The study reveals that there was a significant rise in diastolic and mean BP at 6° and 8° HDT as compared to baseline. It was also observed that the high-frequency power in HRV was increased at 6° HDT (P = 0.026), with a concomitant reduction in the low-frequency power (P = 0.03) of HRV. The CO was increased at 6° and 8° HDT as compared to baseline (P = 0.037 and 0.021, respectively). There were no significant changes observed in any of the recorded parameters at 4° HDT. The cardiopulmonary volume receptors might have sensed the blood volume change in HDT as in microgravity simulation the blood passively shifts to cephalad. To overcome the low blood volume problem, the heart tried to pump extra blood through increased CO. At 8° HDT, it was observed that the cardiac sympathetic activity and CO were increased, which is not observed during microgravity exposures. Conclusion: The study suggests that 6° head-down-tilt is the best tilt level for producing microgravity on earth to study immediate cardiovascular parameters as it is a balanced compromise of increased vagal activity and CO without activation of cardiac sympathetic activity. Therefore, our data provide physiological evidence in support of 6° HDT microgravity simulation for the study of immediate cardiovascular responses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    1
    Citations
    NaN
    KQI
    []
    Baidu
    map