Multiple soil element and pH interactions constrain plant performance on tropical soils with a long history of fire

2020 
Agriculture and forestry in savanna soils worldwide are often constrained by multiple soil limitations. We measured the effect of fertilisation on growth of Pinus caribaea var. hondurensis in order to improve savanna soil productivity in the Northern Territory, Australia. Growth responses to nitrogen, potassium, sulfur and a combined trace element treatment (abbreviated to N × K × S × T) with basal phosphorus (P) application on three soils, and N × P × K × S × T on another three soils, were examined in glasshouse factorial experiments. Without P, there was little response to N, S or T. Growth was usually greatest on N + P + S treatments. The P applications increased soil pH and growth, while N and S applications decreased pH. Growth was consistently poor at soil pH < ~5.2; a pH where exchangeable cations can be leached from the soil and aluminium can become more mobile. Responses to P, N, S and K, and likely also to zinc, were consistent with savanna soils with a long history of nutrient losses due to fire and weathering. Establishing productive plantations or agriculture will require detailed knowledge of soil properties, careful attention to soil pH and balanced fertiliser applications so as not to produce perverse outcomes. Long-term protection from fires could improve soil conditions, to be balanced against the risks of crop loss through unplanned fire.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    1
    Citations
    NaN
    KQI
    []
    Baidu
    map